Banco de calibración basados en Coriolis para medidores de 2” y 4”: evidencia del sector petroquímico de Cartagena sobre capacidades dinámicas, confiabilidad y sostenibilidad
DOI:
https://doi.org/10.71112/gp286b38Palabras clave:
capacidades dinámicas, medidores Coriolis, banco de calibración, PLS-SEM, sector petroquímicoResumen
Este estudio evalúa la aceptación de un banco de calibración propio para medidores de 2” y 4” basado en tecnología Coriolis en el sector petroquímico de Cartagena. Se empleó un diseño mixto secuencial que combinó una encuesta (n=135) con entrevistas semiestructuradas (n=5). Mediante PLS-SEM se probaron cinco impulsores—confiabilidad percibida, reducción de costos, eficiencia en tiempos de calibración, trazabilidad/cumplimiento y sostenibilidad ambiental—sobre la aceptación. El modelo mostró alta capacidad explicativa y predictiva (R² = 83.11%; Q² = 0.499), buen ajuste (GOF = 0.706; SRMR = 0.061; NFI = 0.804) y rutas significativas. Los hallazgos cualitativos corroboraron demanda por certificados acreditados, transparencia de precios, descuentos por volumen, informes rápidos y soporte postservicio. Los resultados indican que los bancos basados en Coriolis superan a los sistemas volumétricos/gravimétricos en eficiencia, sostenibilidad y legitimidad, posicionando al Caribe colombiano como referente regional en modernización metrológica. El estudio aporta además una perspectiva novedosa a las Capacidades Dinámicas al concebir las infraestructuras metrológicas como activos estratégicos que reconfiguran recursos, reducen la incertidumbre y fortalecen la competitividad en contextos regulados.
Descargas
Referencias
American Petroleum Institute. (2020). Manual of petroleum measurement standards (MPMS): Chapters 5.6 and 5.8—Measurement of liquid hydrocarbons by Coriolis meters. API.
CENAM. (2008). Guía técnica sobre trazabilidad e incertidumbre en la calibración de medidores de flujo de líquidos empleando como referencia un patrón volumétrico. Centro Nacional de Metrología.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Costa, F. O., de Oliveira, C. E. M., & Gaspar, J. (2020). Modeling temperature effects on a Coriolis mass flowmeter. Sensors, 20(9), 2689. https://doi.org/10.3390/s20092689
Druzhkov, A., Kiselev, I., & Makarenko, A. (2025). Coriolis flow metering in CO₂ measurement: Accuracy and stability. Flow Measurement and Instrumentation, 96, 102059.
Frahm, E., Arias, R., Maldonado, M., Vargas, J., Mendoza, J., Arredondo, A., & Silvosa, M. (2025). Performance and application of Coriolis flow meters as transfer standards in the field of fluid flow. Flow Measurement and Instrumentation, 95, 102052.
Furuichi, N., Arias, R., Yang, C., Chun, S., Meng, T., Shinder, I., … Smits, F. (2022). Final report “Key comparison CCM.FF-K1.2015 – Water flow: 30 m³/h … 200 m³/h”. Metrologia, 59(1A), 07013. https://doi.org/10.1088/0026-1394/59/1A/07013
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis (7th ed.). Prentice Hall.
Hernández-Nieto, R. A. (2011). Contribuciones al análisis de la validez de contenido: Una revisión conceptual y metodológica. Universidad de Los Andes.
Icontec. (2017). GTC 214:2017. Guía para la estimación de la incertidumbre en la calibración. Instituto Colombiano de Normas Técnicas y Certificación.
International Organization for Standardization. (2014). ISO 4064-1:2014. Water meters for cold potable water and hot water—Part 1: Metrological and technical requirements. ISO.
International Organization for Standardization. (2020). ISO 17089-1:2020. Measurement of fluid flow in closed conduits—Ultrasonic meters for gas—Part 1: Meters for custody transfer and allocation measurement. ISO. https://www.iso.org/standard/73935.html
JCGM. (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement (JCGM 100:2008). Joint Committee for Guides in Metrology.
Kang, W., Choi, J., Kim, Y., & Lee, S. (2022). Investigation of a calibration method of Coriolis mass flowmeters at hydrogen refueling stations. Applied Sciences, 12(24), 12609. https://doi.org/10.3390/app122412609
Kenbar, A., Zhang, T., & Smith, P. (2021). Influence of flow disturbances on the performance of Coriolis meters. Flow Measurement and Instrumentation, 77, 101871.
Li, X., Zhang, Z., & Chen, Y. (2022). Advances in water metering technologies: A review of accuracy and sustainability. Water, 14(3), 456. https://doi.org/10.3390/w14030456
Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–385.
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99. https://doi.org/10.1037/1082-989X.4.1.84
Mendoza Betin, J. A. (2018). Capacidades dinámicas: Un análisis empírico de su naturaleza. MLS Educational Research, 2(2), 193–210. https://doi.org/10.29314/mlser.v2i2.80
Mendoza Betin, J. A. (2019a). Capacidades dinámicas y rentabilidad financiera: Análisis desde una perspectiva ecléctica en empresas de saneamiento básico de Cartagena [Tesis doctoral, Universidad Internacional Iberoamericana].
Mendoza-Betin, J. A. (2019b). Innovación de procesos: Estudio práctico de Aguas de Cartagena S.A. E.S.P. “ACUACAR”. Desarrollo Gerencial, 11(2), 1–20. https://doi.org/10.17081/dege.11.2.3477
Mendoza Betin, J. A., Arrieta Rojas, Y. T., Llorente Tovar, A. F., & Paternina Barros, A. C. (2020). Emprendimiento corporativo: El plan de excelencia de Aguas de Cartagena S.A. E.S.P. “ACUACAR”. REICE: Revista Electrónica de Investigación en Ciencias Económicas, 8(15), 1–25. https://doi.org/10.5377/reice.v8i15.9938
Mendoza-Betin, J. (2021a). Resiliencia empresarial: Análisis empírico de Aguas de Cartagena S.A. E.S.P. Revista Científica Anfibios, 4(1), 11–26. https://doi.org/10.37979/afb.2021v4n1.80
Mendoza-Betin, J. A. (2021b). Transferencia de conocimiento: El caso del grupo Suez y Aguas de Cartagena S.A. E.S.P. “ACUACAR”. Project Design and Management, 3(2). https://doi.org/10.35992/pdm.v3i2.949
Mendoza-Betin, J. (2022). Gestión de procesos: Ejercicio práctico de empresas de acueducto y alcantarillado. Revista Científica Anfibios, 5(2), 18–37. https://doi.org/10.37979/afb.2022v5n2.110
Mendoza-Betin, J., Moncada-Baleta, S., Arias-Caseres, F., & Ramos-Pacheco, C. (2024). Análisis de subcontaje y sobredimensionamiento de contadores de agua: Ejercicio empírico del Laboratorio de Metrología de Aguas de Cartagena S.A. E.S.P. Revista Científica Anfibios, 7(1), 50–71. https://doi.org/10.37979/afb.2024v7n1.147
Mendoza Betin, J. A. (2025a). Cultura organizacional como motor de innovación social: Evidencia empírica desde el Caribe colombiano. Revista Multidisciplinar Epistemología de las Ciencias, 2(2), 1393–1420. https://doi.org/10.71112/fn3c8d34
Mendoza Betin, J. A. (2025b). Beéle y las capacidades dinámicas en la industria musical contemporánea. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 1396–1411. https://doi.org/10.71112/vqv0ww84
Mendoza Betin, J. A. (2025c). Dynamic capabilities as generative mechanisms: Insights from Beéle’s Borondo and the Afrobeat music sector. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 1925–1952. https://doi.org/10.71112/h4ybam13
Mendoza Betin, J. A. (2025d). Impacto de la integración de estrategias de marketing tradicional y digital en organismos acreditados de ACUACAR. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 986–1029. https://doi.org/10.71112/4ed4bt51
Mendoza Betin, J. A. (2025e). Liderazgo narrativo híbrido: La nueva arquitectura del periodismo gerencial en medios emergentes del Caribe colombiano. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 421–455. https://doi.org/10.71112/cwq0rg11
Mills, C. (2020). Calibrating and operating Coriolis flow meters with respect to process effects. Flow Measurement and Instrumentation, 71, 101649. https://doi.org/10.1016/j.flowmeasinst.2019.101649
Mills, C. (2021). The consistency of pressure effects between three identical Coriolis flow meters. Flow Measurement and Instrumentation, 77, 102001. https://doi.org/10.1016/j.flowmeasinst.2021.102001
National Institute of Standards and Technology. (2016). NIST Technical Note 1937: Gravimetric and volumetric primary standards for flow measurement. U.S. Department of Commerce. https://doi.org/10.6028/NIST.TN.1937
Nguyen, H. T., Park, J., & Lee, K. (2021). Cryogenic flow measurement using Coriolis meters: Accuracy and limitations. Cryogenics, 116, 103307. https://doi.org/10.1016/j.cryogenics.2021.103307
Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2, 13–32. https://doi.org/10.1207/S15328031US0201_02
Sawada, T., Yamada, Y., & Okada, K. (2019). Turbulence effects on Coriolis mass flowmeter performance. Journal of Flow Control, Measurement & Visualization, 7(3), 81–92.
Wright, J. D., & Mickan, B. (2016). Primary standards for flow measurement. Physikalisch-Technische Bundesanstalt.
Zhang, J., Li, P., & Wang, H. (2020). Smart water metering and management: Trends and future directions. Water, 12(7), 1971. https://doi.org/10.3390/w12071971
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Dr. Javier Alfonso Mendoza Betin, Ferney Jose Arias Caseres, Brahayan Camilo Sierra García (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.






