Coriolis-based calibration benche for 2” and 4” flow meters: evidence from Cartagena’s petrochemical sector on dynamic capabilities, reliability and sustainability

Authors

DOI:

https://doi.org/10.71112/gp286b38

Keywords:

capacidades dinámicas , medidores Coriolis, banco de calibración, PLS- SEM, sector petroquímico

Abstract

This study evaluates the acceptance of an in-house calibration bench for 2” and 4” meters based on Coriolis technology in Cartagena’s petrochemical sector. A sequential mixed-methods design combined a survey (n=135) with semi-structured interviews (n=5). Partial Least Squares–SEM tested five drivers—perceived reliability, cost reduction, calibration time efficiency, traceability/compliance, and environmental sustainability—on acceptance. The model showed strong explanatory and predictive power (R² = 83.11%; Q² = 0.499), good fit (GOF = 0.706; SRMR = 0.061; NFI = 0.804), and significant paths. Qualitative findings corroborated demand for accredited certificates, price transparency, volume discounts, rapid reporting, and post-service support. Results indicate that Coriolis-based benches outperform traditional volumetric/gravimetric systems on efficiency, sustainability, and legitimacy, positioning the Colombian Caribbean as a regional reference in metrological modernization. The study also contributes a novel lens to Dynamic Capabilities by framing metrological infrastructures as strategic assets that reconfigure resources, reduce uncertainty, and enhance competitiveness across regulated industrial contexts.

Downloads

Download data is not yet available.

References

American Petroleum Institute. (2020). Manual of petroleum measurement standards (MPMS): Chapters 5.6 and 5.8—Measurement of liquid hydrocarbons by Coriolis meters. API.

CENAM. (2008). Guía técnica sobre trazabilidad e incertidumbre en la calibración de medidores de flujo de líquidos empleando como referencia un patrón volumétrico. Centro Nacional de Metrología.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Costa, F. O., de Oliveira, C. E. M., & Gaspar, J. (2020). Modeling temperature effects on a Coriolis mass flowmeter. Sensors, 20(9), 2689. https://doi.org/10.3390/s20092689

Druzhkov, A., Kiselev, I., & Makarenko, A. (2025). Coriolis flow metering in CO₂ measurement: Accuracy and stability. Flow Measurement and Instrumentation, 96, 102059.

Frahm, E., Arias, R., Maldonado, M., Vargas, J., Mendoza, J., Arredondo, A., & Silvosa, M. (2025). Performance and application of Coriolis flow meters as transfer standards in the field of fluid flow. Flow Measurement and Instrumentation, 95, 102052.

Furuichi, N., Arias, R., Yang, C., Chun, S., Meng, T., Shinder, I., … Smits, F. (2022). Final report “Key comparison CCM.FF-K1.2015 – Water flow: 30 m³/h … 200 m³/h”. Metrologia, 59(1A), 07013. https://doi.org/10.1088/0026-1394/59/1A/07013

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis (7th ed.). Prentice Hall.

Hernández-Nieto, R. A. (2011). Contribuciones al análisis de la validez de contenido: Una revisión conceptual y metodológica. Universidad de Los Andes.

Icontec. (2017). GTC 214:2017. Guía para la estimación de la incertidumbre en la calibración. Instituto Colombiano de Normas Técnicas y Certificación.

International Organization for Standardization. (2014). ISO 4064-1:2014. Water meters for cold potable water and hot water—Part 1: Metrological and technical requirements. ISO.

International Organization for Standardization. (2020). ISO 17089-1:2020. Measurement of fluid flow in closed conduits—Ultrasonic meters for gas—Part 1: Meters for custody transfer and allocation measurement. ISO. https://www.iso.org/standard/73935.html

JCGM. (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement (JCGM 100:2008). Joint Committee for Guides in Metrology.

Kang, W., Choi, J., Kim, Y., & Lee, S. (2022). Investigation of a calibration method of Coriolis mass flowmeters at hydrogen refueling stations. Applied Sciences, 12(24), 12609. https://doi.org/10.3390/app122412609

Kenbar, A., Zhang, T., & Smith, P. (2021). Influence of flow disturbances on the performance of Coriolis meters. Flow Measurement and Instrumentation, 77, 101871.

Li, X., Zhang, Z., & Chen, Y. (2022). Advances in water metering technologies: A review of accuracy and sustainability. Water, 14(3), 456. https://doi.org/10.3390/w14030456

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151–1169. https://doi.org/10.6018/analesps.30.3.199361

Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–385.

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99. https://doi.org/10.1037/1082-989X.4.1.84

Mendoza Betin, J. A. (2018). Capacidades dinámicas: Un análisis empírico de su naturaleza. MLS Educational Research, 2(2), 193–210. https://doi.org/10.29314/mlser.v2i2.80

Mendoza Betin, J. A. (2019a). Capacidades dinámicas y rentabilidad financiera: Análisis desde una perspectiva ecléctica en empresas de saneamiento básico de Cartagena [Tesis doctoral, Universidad Internacional Iberoamericana].

Mendoza-Betin, J. A. (2019b). Innovación de procesos: Estudio práctico de Aguas de Cartagena S.A. E.S.P. “ACUACAR”. Desarrollo Gerencial, 11(2), 1–20. https://doi.org/10.17081/dege.11.2.3477

Mendoza Betin, J. A., Arrieta Rojas, Y. T., Llorente Tovar, A. F., & Paternina Barros, A. C. (2020). Emprendimiento corporativo: El plan de excelencia de Aguas de Cartagena S.A. E.S.P. “ACUACAR”. REICE: Revista Electrónica de Investigación en Ciencias Económicas, 8(15), 1–25. https://doi.org/10.5377/reice.v8i15.9938

Mendoza-Betin, J. (2021a). Resiliencia empresarial: Análisis empírico de Aguas de Cartagena S.A. E.S.P. Revista Científica Anfibios, 4(1), 11–26. https://doi.org/10.37979/afb.2021v4n1.80

Mendoza-Betin, J. A. (2021b). Transferencia de conocimiento: El caso del grupo Suez y Aguas de Cartagena S.A. E.S.P. “ACUACAR”. Project Design and Management, 3(2). https://doi.org/10.35992/pdm.v3i2.949

Mendoza-Betin, J. (2022). Gestión de procesos: Ejercicio práctico de empresas de acueducto y alcantarillado. Revista Científica Anfibios, 5(2), 18–37. https://doi.org/10.37979/afb.2022v5n2.110

Mendoza-Betin, J., Moncada-Baleta, S., Arias-Caseres, F., & Ramos-Pacheco, C. (2024). Análisis de subcontaje y sobredimensionamiento de contadores de agua: Ejercicio empírico del Laboratorio de Metrología de Aguas de Cartagena S.A. E.S.P. Revista Científica Anfibios, 7(1), 50–71. https://doi.org/10.37979/afb.2024v7n1.147

Mendoza Betin, J. A. (2025a). Cultura organizacional como motor de innovación social: Evidencia empírica desde el Caribe colombiano. Revista Multidisciplinar Epistemología de las Ciencias, 2(2), 1393–1420. https://doi.org/10.71112/fn3c8d34

Mendoza Betin, J. A. (2025b). Beéle y las capacidades dinámicas en la industria musical contemporánea. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 1396–1411. https://doi.org/10.71112/vqv0ww84

Mendoza Betin, J. A. (2025c). Dynamic capabilities as generative mechanisms: Insights from Beéle’s Borondo and the Afrobeat music sector. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 1925–1952. https://doi.org/10.71112/h4ybam13

Mendoza Betin, J. A. (2025d). Impacto de la integración de estrategias de marketing tradicional y digital en organismos acreditados de ACUACAR. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 986–1029. https://doi.org/10.71112/4ed4bt51

Mendoza Betin, J. A. (2025e). Liderazgo narrativo híbrido: La nueva arquitectura del periodismo gerencial en medios emergentes del Caribe colombiano. Revista Multidisciplinar Epistemología de las Ciencias, 2(3), 421–455. https://doi.org/10.71112/cwq0rg11

Mills, C. (2020). Calibrating and operating Coriolis flow meters with respect to process effects. Flow Measurement and Instrumentation, 71, 101649. https://doi.org/10.1016/j.flowmeasinst.2019.101649

Mills, C. (2021). The consistency of pressure effects between three identical Coriolis flow meters. Flow Measurement and Instrumentation, 77, 102001. https://doi.org/10.1016/j.flowmeasinst.2021.102001

National Institute of Standards and Technology. (2016). NIST Technical Note 1937: Gravimetric and volumetric primary standards for flow measurement. U.S. Department of Commerce. https://doi.org/10.6028/NIST.TN.1937

Nguyen, H. T., Park, J., & Lee, K. (2021). Cryogenic flow measurement using Coriolis meters: Accuracy and limitations. Cryogenics, 116, 103307. https://doi.org/10.1016/j.cryogenics.2021.103307

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2, 13–32. https://doi.org/10.1207/S15328031US0201_02

Sawada, T., Yamada, Y., & Okada, K. (2019). Turbulence effects on Coriolis mass flowmeter performance. Journal of Flow Control, Measurement & Visualization, 7(3), 81–92.

Wright, J. D., & Mickan, B. (2016). Primary standards for flow measurement. Physikalisch-Technische Bundesanstalt.

Zhang, J., Li, P., & Wang, H. (2020). Smart water metering and management: Trends and future directions. Water, 12(7), 1971. https://doi.org/10.3390/w12071971

Published

2026-01-02

Issue

Section

Applied Sciences

How to Cite

Mendoza Betin, D. J. A., Arias Caseres, F. J., & Sierra García, B. C. (2026). Coriolis-based calibration benche for 2” and 4” flow meters: evidence from Cartagena’s petrochemical sector on dynamic capabilities, reliability and sustainability. Multidisciplinary Journal Epistemology of the Sciences, 3(1), 70-96. https://doi.org/10.71112/gp286b38