The influence of quantum mechanics on semiconductor physics and technology: fundamentals, applications, and perspectives
DOI:
https://doi.org/10.71112/526zdw76Keywords:
quantum mechanics in semiconductors, electronic band structure, nanoscale semiconductor devices, spintronics and quantum informationAbstract
Quantum mechanics constitutes the cornerstone of modern semiconductor physics. From the description of the electron as an entity of wave-particle nature to the understanding of energy band structure, tunneling effects, and quantum confinement, the operating principles of contemporary electronic devices transistors, diodes, lasers, detectors, and integrated circuits derive directly from quantum laws. This paper rigorously analyzes the relationship between quantum theory and semiconductor physics, addressing theoretical foundations, mathematical models, technological applications, and future perspectives in microelectronics and nanotechnology. Fundamental equations, experimental results, and technological projections are integrated within a scientific framework, highlighting the pivotal role of quantum mechanics in the evolution and physical limits of current and emerging semiconductor devices.
Downloads
References
Adachi, S. (2009). Properties of semiconductor alloys: Group-IV, III–V and II–VI semiconductors. Wiley.
https://doi.org/10.1002/9780470744383
Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. Holt, Rinehart and Winston.
Bastard, G. (1988). Wave mechanics applied to semiconductor heterostructures. Les Éditions de Physique.
Colinge, J. P. (2008). FinFETs and other multi-gate transistors. Springer.
https://doi.org/10.1007/978-0-387-71752-4
Datta, S. (1995). Electronic transport in mesoscopic systems. Cambridge University Press.
https://doi.org/10.1017/CBO9780511805776
Griffiths, D. J. (2018). Introduction to quantum mechanics (3rd ed.). Cambridge University Press.
Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045–3067.
https://doi.org/10.1103/RevModPhys.82.3045
Kittel, C. (2005). Introduction to solid state physics (8th ed.). Wiley.
Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum dots. Physical Review A, 57(1), 120–126.
https://doi.org/10.1103/PhysRevA.57.120
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451–10453.
https://doi.org/10.1073/pnas.0502848102
Singh, J. (1993). Physics of semiconductors and their heterostructures. McGraw-Hill.
Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices (3rd ed.). Wiley-Interscience.
https://doi.org/10.1002/0470068329
Theis, T. N., & Solomon, P. M. (2010). It’s time to reinvent the transistor! Science, 327(5973), 1600–1601.
https://doi.org/10.1126/science.1187597
Yu, P. Y., & Cardona, M. (2010). Fundamentals of semiconductors: Physics and materials properties (4th ed.). Springer.
https://doi.org/10.1007/978-3-642-00710-1
Zutic, I., Fabian, J., & Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76(2), 323–410.
https://doi.org/10.1103/RevModPhys.76.323
Zwanenburg, F. A., Dzurak, A. S., Morello, A., Simmons, M. Y., Hollenberg, L. C. L., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. Reviews of Modern Physics, 85(3), 961–1019.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Baldo Alberto Luigi Dalporto (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.






