Machine Learning applicated in cybersecurity

Authors

DOI:

https://doi.org/10.71112/4mvx1985

Keywords:

machine learning, cybersecurity, computer security, intrusion detection, internet of things

Abstract

Machine Learning (ML) has become one of the most widely used technologies and tools today; however, its utility and significance are often overlooked. The purpose of this research is to examine how ML is currently being applied in the field of cybersecurity through a comprehensive literature review. This analysis highlights the various applications of ML in data security mechanisms, information systems, and multiple domains related to information security. The findings demonstrate that ML plays a critical role in security mechanisms for Internet of Things (IoT) devices, Intrusion Detection Systems (IDS), website analysis, banking fraud detection, and Industry 4.0—essentially permeating nearly every technology we use.

Downloads

Download data is not yet available.

References

Anthi, E., Williams, L., Rhode, M., Burnap, P., & Wedgbury, A. (2021). Adversarial attacks on machine learning cybersecurity defences in Industrial Control Systems. Journal of Information Security and Applications, 58. https://doi.org/10.1016/j.jisa.2020.102717

Cando, M., & Medina, P. (2021). Prevención en ciberseguridad: enfocada a los procesos de infraestructura tecnológica. 3C TIC: Cuadernos de Desarrollo Aplicados a Las TIC, 10(1), 17–41. https://doi.org/10.17993/3ctic.2021.101.17-41

Dasgupta, D., Akhtar, Z., & Sen, S. (2020). Machine learning in cybersecurity: a comprehensive survey. Journal of Defense Modeling and Simulation. https://doi.org/10.1177/1548512920951275

Dueñas, J. (2020). Aplicación de técnicas de machine learning a la ciberseguridad: Aprendizaje supervisado para la detección de amenazas web mediante clasificación basada en árboles de decisión. https://openaccess.uoc.edu/items/f49ea127-88ab-47b9-96a4-53194b502e96#page=1

Duzhin, F., & Gustafsson, A. (2018). Machine learning-based app for self-evaluation of teacher-specific instructional style and tools. Education Sciences, 8(1). https://doi.org/10.3390/educsci8010007

Fernández, A. (2019). Machine Learning en Ciberseguridad. https://openaccess.uoc.edu/server/api/core/bitstreams/957679da-ab99-4016-b962-225e8823445f/content

Flores, C. (2020). Inteligencia Artificial, Machine Learning, Deep Learning aplicados a la Ciberseguridad. https://ojs.umsa.bo/index.php/inf_fcpn_pgi/article/view/96

Forero, W., & Bennasar, F. (2024). Técnicas y aplicaciones del Machine Learning e Inteligencia Artificial en educación: una revisión sistemática. RIED-Revista Iberoamericana de Educacion a Distancia, 27(1), 209–253. https://doi.org/10.5944/ried.27.1.37491

Gómez, E., Fernando, D., Aponte, G., & Betancourt, L. (2014). Literature review methodology for scientific and information management, through its structuring and systematization Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA, 81(184), 158–163. http://dyna.medellin.unal.edu.co/

Haider, A., Adnan, M., Rehman, A., Ur, M., & Seok Hyung. (2020). A real-time sequential deep extreme learning machine cybersecurity intrusion detection system. Computers, Materials and Continua, 66(2), 1785–1798. https://doi.org/10.32604/cmc.2020.013910

Lopez, M., Lombardo, J., López, M., Alba, C., Velasco, S., Braojos, M. A., & Fuentes-García, M. (2020). Intelligent Detection and Recovery from Cyberattacks for Small and Medium-Sized Enterprises. International Journal of Interactive Multimedia and Artificial Intelligence, 6(3), 55. https://doi.org/10.9781/ijimai.2020.08.003

Martínez, J., Iglesias, C., & García, P. J. (2019). Review: machine learning techniques applied to cybersecurity. International Journal of Machine Learning and Cybernetics, 10(10), 2823–2836. https://doi.org/10.1007/s13042-018-00906-1

Navarro, A., Urcuqui, C., García, M., & Osorio, J. L. (2018). Ciberseguridad: un enfoque desde la ciencia de datos. Universidad Icesi. https://doi.org/10.18046/EUI/ee.4.2018

Pérez, M., Rial, G., Sotelo, R., & Gurméndez, M. (2020). Clasificador de logs de acceso para detección de incidentes de ciberseguridad. Memoria Investigaciones En Ingeniería, 18. https://doi.org/10.36561/ing.18.7

Pinto, R., Hernández, M., Pinzón, C., Díaz, D., & García, J. (2018). Open source intelligence (OSINT) in a colombian context and sentiment analysis. Revista Vínculos, 15(2), 195–214. https://doi.org/10.14483/2322939x.13504

Ramírez, D., Garcés, L., Doria, T., Franco, S., Valencia, A., Rodríguez, P., & Espinoza, J. (2023). Tendencias investigativas en el uso de Machine Learning en la ciberseguridad. Iberian Journal of Information Systems and Technologies. https://www.proquest.com/openview/c9bf3f3b2192c011f0620adce0649ab3/1?pq-origsite=gscholar&cbl=1006393

Rozo Florelva. (2020). Revisión de las tecnologías presentes en la industria 4.0. Revista UIS Ingenierías, 19(2), 177–191. https://doi.org/10.18273/revuin.v19n2-2020019

Vilone, G., & Longo, L. (2021). Classification of Explainable Artificial Intelligence Methods through Their Output Formats. Machine Learning and Knowledge Extraction, 3(3), 615–661. https://doi.org/10.3390/make3030032

Published

2025-12-05

Issue

Section

Computational Sciences

How to Cite

Pérez Meza, R. (2025). Machine Learning applicated in cybersecurity. Multidisciplinary Journal Epistemology of the Sciences, 2(4), 1625-1639. https://doi.org/10.71112/4mvx1985