DOI: https://doi.org/10.71112/eaktff84
19 Revista Multidisciplinar Epistemología de las Ciencias | Vol. 3, Núm. 1, 2026, enero-marzo
González-Betancor, S. M., López-Puig, A. J., & Cardenal, M. E. (2021). Digital inequality at
home: The school as compensatory agent. Computers & Education, 168,
104195. https://doi.org/10.1016/j.compedu.2021.104195
Hersh, M. (2014). Evaluation framework for ICT-based learning technologies for disabled
people. Computers & Education, 78, 30–
47. https://doi.org/10.1016/j.compedu.2014.05.001
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and
implications for teaching and learning. Center for Curriculum Redesign.
Holmes, W., Porayska-Pomsta, K., & Holstein, K. (2021). Ethics of AI in education: Towards
responsible use. AI and Ethics, 1(1), 1–13. https://doi.org/10.1007/s43681-020-00013-3
Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2023). Artificial intelligence in education:
Opportunities, challenges, and future directions. Computers and Education: Artificial
Intelligence, 4, 100123. https://doi.org/10.1016/j.caeai.2023.100123
Khan, S., Hussain, M., & Yang, S. (2022). Machine learning-based prediction models in
education: A systematic review. Computers and Education: Artificial Intelligence, 3,
100080. https://doi.org/10.1016/j.caeai.2022.100080
Khosravi, H., Kitto, K., & Liu, D. Y. T. (2019). Data-driven learning analytics to predict student
performance: A systematic review. Journal of Learning Analytics, 6(3), 1–
23. https://doi.org/10.18608/jla.2019.63.1
Maier, U., & Klotz, C. (2022). Personalized feedback in digital learning environments:
Classification framework and literature review. Computers and Education: Artificial
Intelligence, 3, 100080. https://doi.org/10.1016/j.caeai.2022.100080
Mehenaoui, Z., Lafifi, Y., & Zemmouri, L. (2022). Learning behavior analysis to identify learner’s
learning style based on machine learning techniques. Journal of Universal Computer
Science, 28(11), 1193–1220. https://doi.org/10.3897/jucs.81518